EnlightenGAN: Deep Light Enhancement without Paired Supervision Supplementary Material

December 12, 2022

1 Data Collection

We collect an unpaired low/normal-light dataset from [7, 5, 1, 2], which contains 914 low-light and 1016 normal-light images respectively. Specifically, the low-light image set consists of 274 images from the LOL dataset [7], 566 lowest exposure photos from [1], and 74 lowest exposure photos from [5]. The normal-light image set includes 690 images from the RAISE dataset [2] and 326 images from the LOL dataset [7]. It is noteworthy that based on this setting there is no similar scene appears in the two part of our proposed dataset.

2 Detailed Network Structure

Our network consists of an attention-based U-Net (AU-Net) as the generator and global-local discriminators. In the generator, we use a *ConvBlock* to denote the convolutional-LeakyReLu-BatchNorm block. In the discriminator, each convolutional layer is followed by a LeakyReLu but we do not adopt batch normalization layer here. The detailed structures of the generator and discriminators are shown in Table. 1 and Table. 2. Furthermore, we also present the generation process of attention map, as shown in the Fig. 1.

3 Human Subjective Evaluation

We recruit 9 subjects from different age groups, genders, cultural and educational backgrounds. Despite the relatively small number of raters, we observed small inter-

Figure 1: Detailed generation process of attention map.

Table 1: Generator Configuration.

Encoder					Decoder				
Laura	- Elice			Layer	Kernel	Stride	C_{in}	C_{out}	
Layer	Kernei	Stride	C_{in}	Cout	ConvBlock	3×3	1	512	512
ConvBlock	3×3	1	4	32	Unsampling	3~3	2	512	512
ConvBlock	3×3	1	32	32	C	3,5	-	510	250
MaxPooling	2×2	2	-	-	ConvBlock	3×3	1	512	256
ConvBlock	3~3	1	32	64	ConvBlock	3×3	1	256	256
CONVENCE	3.5	1	52	64	Upsampling	3×3	2	-	-
ConvBlock	3×3	1	64	64	ConvBlock	3×3	1	256	128
MaxPooling	2×2	2	-	-	ConvBlock	3~3	1	128	120
ConvBlock	3×3	1	64	128	LUNDIOCK	3,5	1	120	120
ConvBlock	3×3	1	128	128	Upsampling	3×3	2	-	-
MayDooling	2.22	2	120	120	ConvBlock	3×3	1	128	64
MaxFooling	2×2	2	-	-	ConvBlock	3×3	1	64	64
ConvBlock	3×3	1	128	256	Unsampling	3×3	2	-	
ConvBlock	3×3	1	256	256	Company	22	1	64	22
MaxPooling	2×2	2	-	-	CONVBIOCK	3×3	1	64	32
ConvBlock	3~3	1	256	512	ConvBlock	3×3	1	32	32
CONTRIDUCK	575	1	250	512	Conv	3×3	1	32	3

Table 2: Discriminators Configuration.

Global Discriminator					Local Discriminator					
Laver	Kernel	Stride	Cin	Court	Local Discriminator					
Com	44	2	2	CA	Layer	Kernel	Stride	C_{in}	Cout	
Conv	4×4	2	3	04	Conv	4×4	2	3	64	
Conv	4×4	2	64	128	Com	44	2	6	120	
Conv	4×4	2	128	256	Conv	4×4	2	04	128	
Conv	4.4	2	256	510	Conv	4×4	2	128	256	
Conv	4×4	2	230	512	Conv	4×4	2	256	512	
Conv	4×4	2	512	512	Conv	4.4	-	510	512	
Conv	4×4	1	512	512	Conv	4×4	1	512	512	
Conv		1	512	512	Conv	4×4	1	512	1	
Conv	4×4	1	512	1						

judge variances among raters on the same pairs comparison results. The average ranking of each images and each methods are shown in the Table. 3

4 Visual Results

We compare our method with several recent competing methods: a vanilla CycleGAN [8] trained using our unpaired training set, RetinexNet [7], SRIE [3], LIME [4], and NPE [6], and show more visual results to demonstrate the effectiveness of our method, including the results of ablation study, comparison and real-world image adaptation. The setting follows what we mentioned in the paper (Sec. 4.2, Sec. 4.3.1, and Sec. 4.4). Images are shown in Fig. 2 to Fig. 6 (Better viewed in electronic version).

Image Id	LIME	NPE	RetinexNet	SRIE	EnlightenGAN	
1	4	3	5	2	1	
2	4	3	5	1	2	
3	4	3	5	1	2	
3	3	4	5	1	2	
4	4	3	5	2	1	
5	4	1	5	2	3	
7	5	2	4	3	1	
8	1	4	5	2	3	
9	5	2	4	3	1	
10	4	2	5	3	1	
11	4	2	5	3	1	
12	3	4	5	2	1	
13	1	2	5	4	3	
13	4	1	5	2	3	
14	4	1	5	3	2	
15	5	3	4	1	2	
17	5	3	4	1	2	
18	5	2	4	1	3	
19	4	3	5	2	1	
20	3	4	5	1	2	
21	5	3	4	1	2	
22	5	3	4	2	1	
23	4	3	5	2	1	

Table 3: Detail scores of human subjective evaluation. Red is the best and blue is the second best results.

Input

CycleGAN

RetinexNet

SRIE

LIME

NPE

EnlightenGAN

Figure 2: Visual results compared with current state-of-the-art methods.

Input

CycleGAN

RetinexNet

NPE

SRIE

Ours

Input

LIME

CycleGAN

RetinexNet

T

NPE

SRIE

Ours

Input

LIME

CycleGAN

LIME

RetinexNet

NPE

SRIE

Ours

Figure 4: Ablation study.

input

EnlightenGAN

AHE

EnlightenGAN

input

LIME

EnlightenGAN

AHE

EnlightenGAN-N

EnlightenGAN-N

Figure 5: Results on BDD-100k dataset.

input

LIME

EnlightenGAN

AHE

EnlightenGAN-N

input

LIME

EnlightenGAN

EnlightenGAN-N

EnlightenGAN

Figure 6: Results on BDD-100k dataset.

EnlightenGAN-N

References

- J. Cai, S. Gu, and L. Zhang. Learning a deep single image contrast enhancer from multi-exposure images. *IEEE Transactions on Image Processing*, 27(4):2049–2062, 2018.
- [2] D.-T. Dang-Nguyen, C. Pasquini, V. Conotter, and G. Boato. Raise: a raw images dataset for digital image forensics. In *Proceedings of the 6th ACM Multimedia Systems Conference*, pages 219–224. ACM, 2015. 1
- [3] X. Fu, D. Zeng, Y. Huang, X.-P. Zhang, and X. Ding. A weighted variational model for simultaneous reflectance and illumination estimation. In *CVPR*, pages 2782–2790, 2016.
- [4] X. Guo, Y. Li, and H. Ling. Lime: Low-light image enhancement via illumination map estimation. *IEEE Transactions on Image Processing*, 26(2):982–993, 2017. 2
- [5] N. K. Kalantari and R. Ramamoorthi. Deep high dynamic range imaging of dynamic scenes. ACM Trans. Graph, 36(4):144, 2017. 1
- [6] S. Wang, J. Zheng, H.-M. Hu, and B. Li. Naturalness preserved enhancement algorithm for non-uniform illumination images. *IEEE Transactions on Image Processing*, 22(9):3538–3548, 2013. 2
- [7] C. Wei, W. Wang, W. Yang, and J. Liu. Deep retinex decomposition for low-light enhancement. arXiv preprint arXiv:1808.04560, 2018. 1, 2
- [8] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. In *ICCV*, pages 2223–2232, 2017. 2