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1 Data Collection

We collect an unpaired low/normal-light dataset from
[7, 5, 1, 2], which contains 914 low-light and 1016
normal-light images respectively. Specifically, the low-
light image set consists of 274 images from the LOL
dataset [7], 566 lowest exposure photos from [1], and 74
lowest exposure photos from [5]. The normal-light image
set includes 690 images from the RAISE dataset [2] and
326 images from the LOL dataset [7]. It is noteworthy
that based on this setting there is no similar scene appears
in the two part of our proposed dataset.

2 Detailed Network Structure

Our network consists of an attention-based U-Net (AU-
Net) as the generator and global-local discriminators.
In the generator, we use a ConvBlock to denote the
convolutional-LeakyReLu-BatchNorm block. In the dis-
criminator, each convolutional layer is followed by a
LeakyReLu but we do not adopt batch normalization layer
here. The detailed structures of the generator and discrim-
inators are shown in Table. | and Table. 2. Furthermore,
we also present the generation process of attention map,
as shown in the Fig. 1.

3 Human Subjective Evaluation

We recruit 9 subjects from different age groups, genders,
cultural and educational backgrounds. Despite the rela-
tively small number of raters, we observed small inter-

Tllumination map

S

4%
Normalize and Inverse
_—

Figure 1: Detailed generation process of attention map.

Generator Configuration.

Decoder

Table 1:
Encoder

Layer Kernel | Stride | Cin | Cout
ConvBlock 3x3 1 32
ConvBlock 3x3 1 32 32
MaxPooling 2x2 2 - -
ConvBlock 3x3 1 32 64
ConvBlock 3x3 1 64 64
MaxPooling 2x2 2 - -
ConvBlock 3x3 1 64 128
ConvBlock 3x3 1 128 | 128
MaxPooling 2x2 2 - -
ConvBlock 3x3 1 128 | 256
ConvBlock 3x3 1 256 | 256
MaxPooling 2x2 2 - -
ConvBlock 3x3 1 256 | 512

Global Discriminator

Table 2: Discriminators Configuration.

Layer | Kernel | Stride | Cin | Cout
Conv 4x4 2 3 64
Conv | 4x4 2 64 128
Conv 4x4 2 128 | 256
Conv 4x4 2 256 | 512
Conv | 4x4 2 512 | 512
Conv | 4x4 1 512 | 512
Conv 4x4 1 512 1

Layer Kernel | Stride | Cin | Cout
ConvBlock 3x3 1 512 512
Upsampling 3x3 2 - -
ConvBlock 3x3 1 512 | 256
ConvBlock 3x3 1 256 | 256
Upsampling 3x3 2 - -
ConvBlock 3x3 1 256 128
ConvBlock 3x3 1 128 128
Upsampling 3x3 2 - -
ConvBlock 3x3 1 128 64
ConvBlock 3x3 1 64 64
Upsampling 3x3 2 - -
ConvBlock 3x3 1 64 32
ConvBlock 3x3 1 32 32

Conv 3x3 1 32 3

Local Discriminator

Layer | Kernel | Stride | Cin | Cout
Conv 4x4 2 3 64
Conv 4x4 2 64 128
Conv 4x4 2 128 256
Conv 4x4 2 256 | 512
Conv 4x4 1 512 | 512
Conv 4x4 1 512 1




judge variances among raters on the same pairs compari-
son results. The average ranking of each images and each
methods are shown in the Table. 3

4 Visual Results

We compare our method with several recent competing
methods: a vanilla CycleGAN [&] trained using our un-
paired training set, RetinexNet [7], SRIE [3], LIME [4],
and NPE [6], and show more visual results to demonstrate
the effectiveness of our method, including the results of
ablation study, comparison and real-world image adapta-
tion. The setting follows what we mentioned in the paper
(Sec. 4.2, Sec. 4.3.1, and Sec. 4.4). Images are shown in
Fig. 2 to Fig. 6 (Better viewed in electronic version).



Table 3: Detail scores of human subjective evaluation. Red is the best and blue is the second best results.
Image Id || LIME | NPE | RetinexNet | SRIE | EnlightenGAN
1 1
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Figure 2: Visual results compared with current state-of-the-art methods.
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Figure 3: Visual results compared with current state-of-the-art methods.
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Figure 4: Ablation study.
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Figure 5: Results on BDD-100k dataset.
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Figure 6: Results on BDD-100k dataset.
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